Louisa May Alcott’s _____ the philosophical brilliance of her father’s intellect was _____ by her impatience with his unworldliness.

A. exasperation with . . contradicted
B. concealment of . . supplanted
C. respect for . . augmented
D. rebellion against . . qualified
E. reverence for . . tempered

Let’s look at a couple of different methods of solving this problem.

1. Understand What to Expect

Before you have read any of the answer choices and begin to stumble over some of the complicated vocabulary words used in the answer choices, see if you can predict what the answer might be based on the information provided to you in the problem sentence. You aren’t trying to guess the exact word that might be in the correct answer choice, but only the type of word that you should expect. Is it a positive word, negative word, etc?

Ask yourself what sort of words would likely fill the blanks provided. Consider the first blank, which comes directly before a description of the intellectual brilliance of Louisa’s father. It is likely that she loved her father and thought highly of him, particularly with regards to his intelligence. Therefore, you should expect a verb with a positive meaning to fill the first blank.
The second blank comes directly before a description of her impatience with her father over his unworldliness. Her father’s brilliance is a positive attribute, the unworldliness is a negative. The missing word is a verb that allows a transition between these two, somehow reconciling the positive and negative aspects of her father’s character.

Now that you have an idea of what to expect in a correct answer choice, review the choices provided. Choices C and E both have a positive word to fill the first blank, “respect” and “reverence” respectively, so either could be correct. Moving to the second word to clarify which is the correct answer, you encounter the words “augmented” and “tempered”. Augmenting deals with increasing or supporting. It doesn’t make sense that a positive attribute of her father’s would increase her impatience, making choice C incorrect. Tempering deals with modifying or adjusting. It does make sense that her perception of a positive attribute of her father’s would be modified or adjusted by a negative attribute, making choice E correct.

2. Group the Answers

Review the answer choices and try to identify the common aspects of each answer choice. Are any of the words synonyms or antonyms?

Without ever having looked at the problem, but simply reviewing the answer choices can tell you a lot of information. Classify the words in the answer choice as positive or negative words and group them together. For example, you can tell that both answer choice A and D deal with “anger”, using the words “exasperation” and “rebellion”. Answer choices C and E deal with “appreciation”, using the words “respect” and “reverence”. Answer choice B stands alone, and in many cases can be immediately eliminated from consideration.
Grouping answers makes it easy to accept or reject more than one answer at a time. By reviewing the context of the sentence, “appreciation” makes more sense than “anger” in describing a woman’s perception of her father’s intellectual brilliance. Therefore, answer choices A and D can both be rejected simultaneously. Because “appreciation” is a likely description of Louisa’s perception of her father’s brilliance, choice B can be dismissed temporarily. If on further inspection answer choice C and E do not continue to make sense, then you can easily return to choice B for consideration.

Once again, in comparing the remaining words in choice C and E, “augmented” and “tempered”, the meaning of the root word “temper” as a modifying agent makes it the better answer, and choice E correct.

3. Make it Easier

As you go through and read the sentence and answer choices, don’t allow a complicated wording to confuse you. If you know the meaning of a phrase and it is over complicated, be sure to mentally substitute or scratch through and write above the phrase an easier word that means the same thing.

For example, you can rewrite “Louisa May Alcott’s------- the philosophical brilliance of her father’s intellect was ------- by her impatience with his unworldliness” as “Louisa May Alcott’s------- her father’s intelligence was ------- by her impatience with his simplicity.

Using words that are simpler and may make it easier for you to understand the true context of the sentence will make it easier for you to identify the correct answer choice. Similarly, you can use synonyms of difficult words as a mental replacement of the words in the answer choices to make it easier for you to understand how the word fits into the sentence.
For example, if you know the meaning of the word “supplanted” in choice B, but have difficulty understanding how it fits into the sentence, mentally replace it with the word “displaced.” Displaced means the same thing and may be easier for you to read and understand in the context of the sentence.

Sample Quantitative Comparison Question from the Quantitative subtest

Column A = a(b – c) + f
Column B = ab – c + f

A. The quantity in Column A is greater.
B. The quantity in Column B is greater.
C. The two quantities are equal.
D. The relationship cannot be determined from the information given.

Let’s look at a couple of different methods of solving this problem.

1. Simplify the Problem

Whenever you have a complicated problem that can be simplified, by all means take the few seconds to do so. The equations can both be simplified.

First, as you can see, the variable “f” is added to both equations. This added variable has the same effect to both equations, and removing it has the same effect as well. Therefore, simplify both equations by removing the “+ f”, leaving you with a(b – c) and ab – c.
Second, multiply out what remains in Column A, which takes you from \(a(b - c)\) to \(ab - ac\).

Third, you should note that the two remaining equations, \(ab - ac\) and \(ab - c\) both have \("ab"\) at the beginning. You can simplify both equations by eliminating the \("ab"\) at the beginning, just as you eliminated the \("+ f\) at the end. This leaves you with \(-ac\) and \(-c\).

At this point, you have much more simplified equations to compare. Since the \("a\) in the equation \("-ac\) could be anything, you have no way of knowing if it makes Column A greater, less than, or equal to what is in Column B, which means that answer choice D is correct; the relationship cannot be determined from the information given.

2. Plug and Chug

Quantitative comparison problem including variables can often be solved by plugging in a few quick numbers, and seeing what happens when you “solve” for the answer using your plugged in numbers. Pick a few numbers for your variables a, b, c, and f. Good numbers to try are 1, 0, and –1, as it gives the range of positive, neutral, and negative numbers, as well as being easy to multiply and divide by.

Get a baseline by making all of the variables equal to 1. For the first equation of \(a(b - c) + f\), this gives you \(1(1 - 1) + 1\) or 1. For the second equation of \(ab - c + f\), this gives you \(1*1 - 1 + 1\) or 1, meaning the two equations could equal one another, or choice C might be correct. However, choice D could still be correct if other variables would cause one equation to be greater than another, which would mean that not enough information had been provided.

Now try another variable. Let’s try changing variable “a” from a “1” to a “0”. This changes the first equation to \(0(1 - 1) + 1\) or 1, and the second equation to \(0*1 - 1 + 1\)
or 0. One is greater than zero, which means that choice A might be correct, but since we know that choice A and choice C cannot both be correct, then the answer must be choice D; the relationship cannot be determined from the information given.

3. Create an Equality

An equality is when you have two equations separated by the equal sign. Converting the information from Column A and Column B into an equality gives you \(a(b - c) + f = ab - c + f \). Solving this is similar to method 1, simplifying the problem. You would solve the equality by subtracting \(f \) from both sides, leaving you with \(a(b - c) = ab - c \). Then multiplying the left side of the equality out gives you \(ab - ac = ab - c \).

Subtracting \(ab \) from both sides, leaves you with \(-ac = -c \). Dividing both sides by \(-c \), gives you \(a = 1 \). However, you do not know that \(a = 1 \). The variable \(a \) could equal anything in this problem, meaning that not enough information has been provided for you to give a definite answer, making choice D correct.

Sample Reading Comprehension Question from the Verbal subtest

Mark Twain was well aware of his celebrity. He was among the first authors to employ a clipping service to track press coverage of himself, and it was not unusual for him to issue his own press statements if he wanted to influence or "spin" coverage of a particular story. The celebrity Twain achieved during his last ten years still reverberates today. Nearly all of his most popular novels were published before 1890, long before his hair grayed or he began to wear his famous white suit in public. We appreciate the author but seem to remember the celebrity.

Based on the passage above, Mark Twain seemed interested in:
Let's look at a couple of different methods of solving this problem.

1. Identify the key words in each answer choice. These are the nouns and verbs that are the most important words in the answer choice.

A. maintaining, celebrity
B. selling, books
C. hiding, life
D. gaining, popularity
E. writing, novel

Now try to match up each of the key words with the passage and see where they fit. You're trying to find synonyms and/or exact replication between the key words in the answer choices and key words in the passage.

A. maintaining – no matches; celebrity – matches in sentences 1, 3, and 5
B. selling – no matches; books – matches with “novels” in sentence 4.
C. hiding – no matches; life – no matches
D. gaining – no matches; popularity – matches with “celebrity” in sentences 1, 3, and 5, because they can be synonyms
E. writing – no matches; novel – matches in sentence 4

At this point there are only two choices that have more than one match, choices A and D, and they both have the same number of matches, and with the same word in the passage, which is the word “celebrity” in the passage. This is a good sign,
because GRE will often write two answer choices that are close. Having two answer choices pointing towards the same key word is a strong indicator that those key words hold the “key” to finding the right answer.

Now let’s compare choice A and D and the unmatched key words. Choice A still has “maintaining” which doesn’t have a clear match, while choice D has “gaining” which doesn’t have a clear match. While neither of those have clear matches in the passage, ask yourself what are the best arguments that would support any kind of connection with either of those two words.

“Maintaining” makes sense when you consider that Twain was interested in tracking his press coverage and that he was actively managing the “spin” of certain stories.

“Gaining” makes sense when you consider that Twain was actively issuing his own press releases, however one key point to remember is that he was only issuing these press releases after another story was already in existence.

Since Twain’s press releases were not being released in a news vacuum, but rather as a response mechanism to ensure control over the angle of a story, his releases were more to maintain control over his image, rather than gain an image in the first place.

Furthermore, when comparing the terms “popularity” and “celebrity”, there are similarities between the words, but in referring back to the passage, it is clear that “celebrity” has a stronger connection to the passage, being the exact word used three times in the passage.

Since “celebrity” has a stronger match than “popularity” and “maintaining” makes more sense than “gaining,” it is clear that choice A is correct.

2. Use a process of elimination.
A. maintaining his celebrity – The passage discusses how Mark Twain was both aware of his celebrity status and would take steps to ensure that he got the proper coverage in any news story and maintained the image he desired. This is the correct answer.

B. selling more of his books – Mark Twain’s novels are mentioned for their popularity and while common sense would dictate that he would be interested in selling more of his books, the passage makes no mention of him doing anything to promote sales.

C. hiding his private life – While the passage demonstrates that Mark Twain was keenly interested in how the public viewed his life, it does not indicate that he cared about hiding his private life, not even mentioning his life outside of the public eye. The passage deals with how he was seen by the public.

D. gaining popularity – At first, this sounds like a good answer choice, because Mark Twain’s popularity is mentioned several times. The main difference though is that he wasn’t trying to gain popularity, but simply ensuring that the popularity he had was not distorted by bad press.

E. writing the perfect novel – Though every author of fiction may strive to write the perfect novel, and Mark Twain was a famous author, the passage makes no mention of any quest of his to write a perfect novel.

Sample Problem Solving – Discrete Quantitative Question from the Quantitative subtest:
Three coins are tossed up in the air. What is the probability that two of them will land heads and one will land tails?

A. 0
B. 1/8
C. 1/4
D. 3/8
E. 1/2

Let’s look at a few different methods and steps to solving this problem.

1. Reduction and Division

Quickly eliminate the probabilities that you immediately know. You know to roll all heads is a 1/8 probability, and to roll all tails is a 1/8 probability. Since there are in total 8/8 probabilities, you can subtract those two out, leaving you with 8/8 – 1/8 – 1/8 = 6/8. So after eliminating the possibilities of getting all heads or all tails, you’re left with 6/8 probability. Because there are only three coins, all other combinations are going to involve one of either head or tail, and two of the other. All other combinations will either be 2 heads and 1 tail, or 2 tails and 1 head. Those remaining combinations both have the same chance of occurring, meaning that you can just cut the remaining 6/8 probability in half, leaving you with a 3/8ths chance that there will be 2 heads and 1 tail, and another 3/8ths chance that there will be 2 tails and 1 head, making choice D correct.

2. Run Through the Possibilities for that Outcome

You know that you have to have two heads and one tail for the three coins. There are only so many combinations, so quickly run through them all.

You could have:
Reviewing these choices, you can see that three of the eight have two heads and one tail, making choice D correct.

3. Fill in the Blanks with Symbology and Odds

Many probability problems can be solved by drawing blanks on a piece of scratch paper (or making mental notes) for each object used in the problem, then filling in probabilities and multiplying them out. In this case, since there are three coins being flipped, draw three blanks. In the first blank, put an “H” and over it write “1/2”. This represents the case where the first coin is flipped as heads. In that case (where the first coin comes up heads), one of the other two coins must come up tails and one must come up heads to fulfill the criteria posed in the problem (2 heads and 1 tail). In the second blank, put a “1” or “1/1”. This is because it doesn’t matter what is flipped for the second coin, so long as the first coin is heads. In the third blank, put a “1/2”. This is because the third coin must be the exact opposite of whatever is in the second blank. Half the time the third coin will be the same as the second coin, and half the time the third coin will be the opposite, hence the “1/2”. Now multiply out the odds. There is a half chance that the first coin will come up “heads”, then it doesn’t matter for the second coin, then there is a half chance that the third coin will be the opposite of the second coin, which will give the desired result of 2 heads and 1 tail. So, that gives $\frac{1}{2} \times 1 \times \frac{1}{2} = \frac{1}{4}$.
But, now you must calculate the probabilities that result if the first coin is flipped tails. So draw another group of three blanks. In the first blank, put a “T” and over it write “1/2”. This represents the case where the first coin is flipped as tails. In that case (where the first coin comes up tails), both of the other two coins must come up heads to fulfill the criteria posed in the problem. In the second blank, put an “H” and over it write “1/2”. In the third blank, put an “H” and over it write “1/2”. Now multiply out the odds. There is a half chance that the first coin will come up “tails”, then there is a half chance that the second coin will be heads, and a half chance that the third coin will be heads. So, that gives $1/2 \times 1/2 \times 1/2 = 1/8$.

Now, add those two probabilities together. If you flip heads with the first coin, there is a 1/4 chance of ultimately meeting the problem’s criteria. If you flip tails with the first coin, there is a 1/8 chance of ultimately meeting the problem’s criteria. So, that gives $1/4 + 1/8 = 2/8 + 1/8 = 3/8$, which makes choice D correct.

Sample Analogies Question from the Verbal subtest:

LECTURE : AUDIENCE :
A. text : translator
B. essay : reader
C. role : understudy
D. novel : protagonist
E. symphony : composer

Let’s look at a couple of different methods of solving this problem.

1. Predict the Relationship
First read the analogy in the question and get a feel for the relationship between the words. Try to develop sentences that link the two words, such as “A lecture is given to an audience.”

Then go through and review each of the answer choices. Ignore the second word in each answer choice and focus on the first. If you only were provided with “text” in answer choice A, what word would be a good match and have the same relationship as the analogy in the question. “Text” is vague and can refer to a book, or any form of written information. “Audience” could actually work and have the same relationship. It could fit into the same sentence you developed above, because a text (such as of a speech) could be given to an audience (whether the media, or a classroom of students). Another word that would fit might be “reader”. A reader picks up the information from a text, just as an audience picks up the information from a lecture. Since the provided term “translator” has a different meaning from the matches of “audience” or “reader”, you know that choice A is incorrect.

A good match for the term “essay” would probably be “reader”, and in fact that is exactly what the answer choice provides, making choice B correct.

However, just to be sure of your answer, you could continue to check the other choices.

The term “role” is completely different from the term “lecture” and a matching analogy would be impossible, making choice C incorrect.

A good match for the term “novel” would also probably be “reader”, certainly not a character in the novel, which is the meaning of the term “proagonist”, making choice D incorrect.
A good match for the term “symphony” would probably be “audience”, which would be the group that would hear the symphony, as opposed to the “conductor”, who directs the symphony, making choice E incorrect.

2. Predict the Relationship Backwards

In this case, you simply reverse the prediction. If you know “text” and “translator”, then what term would create a matching analogy for “lecture”. The term “interpreter” would make the analogy correct. Since “interpreter” is completely different from the given term “audience”, then you know choice A is incorrect.

Similarly, you can go through each of the analogies in the answer choices and predict what theoretical second term in the main analogy pair would create a matching analogy pair to the answer choice analogy. If the theoretical second term means the same as what actually exists, then that answer choice is correct.

Sample Problem Solving – Data Interpretation Question from the Quantitative subtest:

Table 1

<table>
<thead>
<tr>
<th>Length of 0.10 mm diameter aluminum wire(m)</th>
<th>Resistance (ohms) at 20° C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.55</td>
</tr>
<tr>
<td>2</td>
<td>7.10</td>
</tr>
<tr>
<td>4</td>
<td>14.20</td>
</tr>
<tr>
<td>10</td>
<td>35.50</td>
</tr>
</tbody>
</table>
Based on the information in Table 1, one would predict that a 20 m length of aluminum wire with a 0.10 mm diameter would have a resistance of:

A. 16 ohms
B. 25 ohms
C. 30 ohms
D. 34 ohms
E. 71 ohms

Let's look at a few different methods and steps to solving this problem.

1. Create a Proportion or Ratio

The first way you could approach this problem is by setting up a proportion or ratio. You will find that many of the problems on the GRE can be solved using this simple technique. Usually whenever you have a given pair of numbers (this number goes with that number) and you are given a third number and asked to find what number would be its match, then you have a problem that can be converted into an easy proportion or ratio.

In this case you can take any of the pairs of numbers from Table 1. As an example, let's choose the second set of numbers (2 m and 7.10 ohms).

Form a question with the information you have at your disposal: 2 meters goes to 7.10 ohms as 20 meters (from the question) goes to which resistance?

From your ratio: \(2 \text{ m} / 7.10 \text{ ohms} = 20 \text{ m} / x\)

“x” is used as the missing number that you will solve for.

Cross multiplication provides us with \(2 * x = 7.10 * 20\) or \(2x = 142\).
Dividing both sides by 2 gives us \(\frac{2x}{2} = \frac{142}{2} \) or \(x = 71 \), making choice E correct.

2. Use Algebra

While you might think that creating an algebra problem is the last thing that you would want to do, it actually can make the problem extremely simple.

The question is asking for the resistance of a 20 m length of wire. The resistance is a function of the length of the wire, so you know that you could probably set up an algebra problem that would have 20 multiplied by some factor “\(x \)” that would give you your answer.

So, now you have \(20 \times x = ? \)

But what exactly is “\(x \)”? If \(20 \times x \) would give you the resistance of a 20 foot piece of wire, than \(1 \times x \) would give you the resistance of a 1 foot piece of wire. Remember though, the table already told you the resistance of a 1 foot piece of wire – it’s 3.55 ohms.

So, if \(1 \times x = 3.55 \) ohms, then solving for “\(x \)” gives you \(x = 3.55 \) ohms.

Plugging your solution for “\(x \)” back into your initial equation of \(20 \times x = ? \), you now have \(20 \times 3.55 \) ohms = 71 ohms, making choice E correct.

3. Look for a Pattern

Much of the time you can get by with just looking for patterns on problems that provide you with a lot of different numbers. In this case, consider the provided table.

\[1 - 3.55 \]
What patterns do you see in the above number sequences. It appears that when the number in the first column doubled from 1 to 2, the numbers in the second column doubled as well, going from 3.55 to 7.10. Further inspection shows that when the numbers in the first column doubled from 2 to 4, the numbers in the second column doubled again, going from 7.10 to 14.20. Now you've got a pattern, when the first column of numbers doubles, so does the second column.

Since the question asked about a resistance of 20, you should recognize that 20 is the double of 10. Since a length of 10 meant a resistance of 35.50 ohms, then doubling the length of 10 should double the resistance, making 71 ohms, or choice E, correct.

4. Use Logic

A method that works even faster than finding patterns or setting up equations is using simple logic. It appears that as the first number (the length of the wire) gets larger, so does the second number (the resistance).

Since the length of 10 (the largest length wire in the provided table) has a corresponding resistance of 35.50, then another length (such as 20 in the question) should have a length greater than 35.50. As you inspect the answer choices, there is only one answer choice that is greater than 35.50, which is choice E, making it correct.